If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2=900
We move all terms to the left:
10x^2-(900)=0
a = 10; b = 0; c = -900;
Δ = b2-4ac
Δ = 02-4·10·(-900)
Δ = 36000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{36000}=\sqrt{3600*10}=\sqrt{3600}*\sqrt{10}=60\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60\sqrt{10}}{2*10}=\frac{0-60\sqrt{10}}{20} =-\frac{60\sqrt{10}}{20} =-3\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60\sqrt{10}}{2*10}=\frac{0+60\sqrt{10}}{20} =\frac{60\sqrt{10}}{20} =3\sqrt{10} $
| 2x+3(5x-18)=116 | | -3y+15=0 | | 2x+3(5x-18=116 | | 3x+80=16 | | -2x+8x+10=0 | | 30+10(3x)=90 | | 2m^2+m+3=0 | | -2y+6-3y=19 | | 5x+2(7x+4)=103 | | -×-3y=19=2y+6 | | 2x+2(3x-17)=6 | | 221/2-x=-135 | | 18x^2+10=-14x | | 221/2+x=-135 | | 155=2x+5(2x+7) | | 3x-5(4x-2)=10 | | 201=2x+3(5x+16) | | y/2-7=-12 | | 10^x+3=0.9 | | 3x3/2=12 | | d/3-2=4 | | 4(t-3.5)+2t=32.50 | | -3x-235=101-15x | | x(x-14)=2x+36 | | 7x+6=4x-14 | | 2x+6x=116 | | 5n^2-35=0 | | x(x-14)=2(x+13) | | 3x+6-5x=4 | | 11+4n+5+5n=4n+7n | | 90x+7x-14=180 | | 11(n-1)=10n |